Numerical Water Tracers:

A technique for better understanding
the atmospheric water and energy cycle
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Atmospheric Rivers (ARs)

Hivers in the Sky
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From Scientific American

FrorT.1 NOAA ERL
In the US West Coast, a major driver

of extreme precipitation, and even
average precipitation in general, is
the “atmosphere river”, a plume of
elevated integrated water vapor flux.



Atmospheric Rivers

(a) AR Frequency and IVT
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Atmospheric rivers are dominant in the
midlatitude storm track regions, and tend to
9 transport moisture westward and poleward.
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(b) Meridional IVT
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Atmospheric rivers end up producing the
majority (~90%) of poleward moisture
transport in the midlatitudes, even though
they only represent about 10% of the zonal
width.
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(c) AR Zonal Scale

.........................................................

Figures from Guan and Waliser, 2015
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't is unknown where ARs get their moisture
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From Bao et. al. 2006 From Sodemann and Stohl, 2013

Some case studies have shown that locally-evaporated moisture is
dominate, while others have shown a significant amount of tropical
moisture (indicating long-distance moisture transport).



Global Climate Models
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The water cycle is simulated in climate models, which gives us the opportunity to examine
and constrain the related fluxes and reservoirs, at least as simulated by the model.



Water tracers
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One can construct a secondary hydrologic “tracer” cycle in the model, that goes through all
the same processes as the original, but has no influence on any other aspect of the earth
system (no radiative effects, latent heating, wet deposition, etc.).



Water tracers
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One can then construct water tracers or “water tags”, that represent only one aspect of this
secondary hydrologic cycle, allowing for one to determine the impact of specific fluxes,
sources, and sinks.



Water tracers
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Water Tracers

From Koster et al., 1986



Vapor Source Distribution (VSD) tracers

Vapor Source Distribution
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Precipitation source changes

Ok precipitation source - Lake Tanganiyka, East Africa AHosing precipitation source change - Lake Tanganiyka, East Africa
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From Lewis et al., 2010

Changes in moisture source can produce significant changes in the isotope values at a particular
location, by, for example, shortening the mean transport distance, and thus reducing the amount of
Rayleigh distillation that occurs.



Atmospheric Rivers (ARs)

Hivers in the Sky
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In the US West Coast, a major driver

of extreme precipitation, and even
average precipitation in general, is
the “atmosphere river”, a plume of

elevated integrated water vapor flux.
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Water tag experimental setup
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From Nusbaumer and Noone, in prep
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The planet is divided into “tag regions”, where a single water tracer, or tag,

represents all of the surface evaporation/sublimation from that region.
14



Climatological Moisture sources (DJF)
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From Nusbaumer and Noone, in prep

For DJF, the climatological, time-averaged moisture source for the West Coast of the
United States is pre-dominantly the Northeast Pacific subtropics and lower
midlatitudes.



AR Moisture sources

Average moisture
source for
Atmospheric Rivers
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Difference between
AR moisture source
and climatological
(time-average)
moisture source
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Most of the moisture from Atmospheric Rivers comes from relatively local sources, but there
is a significant increase in the amount of tropical moisture in ARs relative to the climatological
mean.

From Nusbaumer and Noone, in prep



AR Moisture source changes due to global warming
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From Nusbaumer and Noone, in prep

In the future, the fraction of moisture from local sources decreases, while the fraction
of moisture from remote sources increases. This appears to be an almost universal
response, not just a US West Coast response, or a response for just Atmospheric Rivers.



Average salinity anomaly (psu)
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From Stott et al., 2008

The Atlantic Basin has been getting saltier, and is projected to increase in salinity over the 215t century.
The salinity changes are driven by changes in the Atlantic freshwater budget, but what is driving those
changes?



Atlantic Salinity

Change in local precip due to Change in local precip due to
changes in evaporation changes in moisture transport
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From Singh et al., 2016

Water tracers in CAM5 have been used to demonstrate that the increases in Atlantic basin salinity in
global warming simulations may be driven by changes in atmospheric moisture transport, which result

in more Atlantic-sourced water precipitating over the Pacific (instead of back over the Atlantic),
resulting in an increasing freshwater loss for the Atlantic Ocean.
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station count

Congo River Basin
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station count

Congo River Basin
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Congo River Basin

July/August Circulation

January Circulation
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Precipitation source changes

Ok precipitation source - Lake Tanganiyka, East Africa AHosing precipitation source change - Lake Tanganiyka, East Africa
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From Lewis et al., 2010

Changes in moisture source can produce significant changes in the isotope values at a particular
location, by, for example, shortening the mean transport distance, and thus reducing the amount of
Rayleigh distillation that occurs.



Congo River Basin
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It has also been found that the inter-annual variability in Congo Basin precipitation is
correlated to increases or decreases in Indian Ocean moisture, particularly from the Eastern
Indian ocean.



The Madden-Julian Oscillation

Madden-Julian Oscillation
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MJO Moisture Sources

moisture source
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One Major Question



Can Water tracer simulations be
validated using observations ?
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The GISS model contains a Tropical West Pacific change that’s not present in CAMS5.
This could indicate a problem with atmospheric moisture transport in one of the

models. Is there any way to determine which model is more accurate?



Water |sotopes

Water isotopes are informal jargon for “water isotopologues”, which
are molecules of water with a heavy hydrogen or oxygen isotope.
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Water isotopes
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Differences in simulated water isotope values at any location is influenced by the model’s representation of
surface evaporation/transpiration, the boundary layer, atmospheric convection, and cloud physics.



Moisture source differences -JJA
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This corresponds to more moisture from locations with enriched evaporation, producing enrichment in the storm track.




d-excess
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* This quantity is strongly dependent on the conditions during evaporation,
but is insensitive to many atmospheric processes

e A case study found that the d-excess, once set during evaporation, was
conserved while the water during transport poleward in an atmospheric
river, possibly allowing it to potentially be an actual source marker, at least
for this one weather phenomenon.



permil

d-excess

US West Coast ARs, binned US West Coast ARs, binned
’I“-O 1 | 1 I | 1 | l 1 | | l | | | I 1 | 1 l 1 1 L ’IO | 1 | I 1 L L I 1 1 I 1 L I L 1 I L 1
10.0 4 = I [
904 T ' - 6 : [
8.0 e . - S -
-1 LY N (D . -
: -".o oN . B
7.0 4 ' o - 2 -
6.0 - - 0 -k
50 +————T——T——T1——T1— 7 B L L HEEL L L
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400

0 30E 60E 90E 120E 150E 180 150w 120W 20w 60W 30w 0

BT [ [ [T
-0.5 -04 -0.3 -0.2 -0.1 0 0.1 02 0.3 0.4 05




Conclusions

* Numerical Water Tracers in climate and weather models provide a way to
determine what the source(s) of atmospheric moisture is for any particular
location or atmospheric process, and how that source or sources my vary.

* They have been an available tool since the 1980s, and have been useful in
examining numerous different scientific questions.

 However, there is a need to find observations capable of validating the
tracer results, otherwise one may unable to reduce the uncertainty in
moisture source projections between different climate models

* Water isotopes, and in particular d-excess, may hold the key to providing
this constraint, at least for atmospheric rivers and/or the storm track
regions.



Thanks for listening!

Questions?

jesse.nusbaumer@nasa.gov



